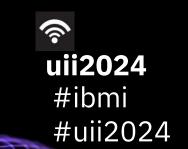
Université IBM i

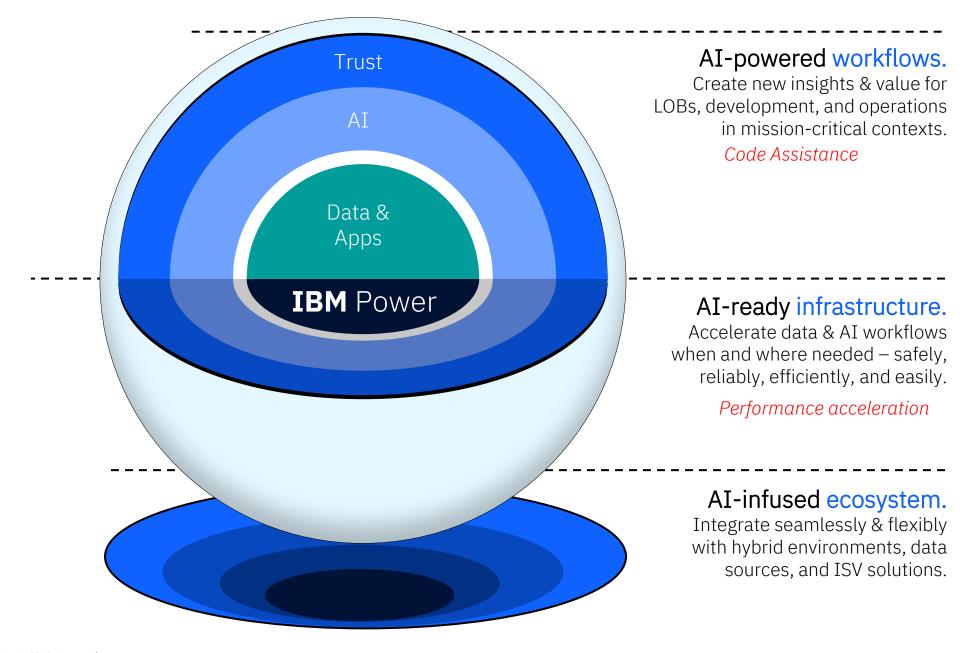

19 et 20 novembre 2024

IBM Innovation Studio Paris

S41 – AI et IBM Power

20 novembre 11:30 - 12:30

Marc Bouzigues
IBM Client Engineering EMEA
marc_bouzigues@fr.ibm.com



Université IBM i 19 et 20 novembre 2024 continuous innovation continuous integration

AI et IBM Power

AI for Business with IBM Power.

Market PoV

what our customers are asking for...

Top Industries:

Finance

Healthcare

Insurance

Manufacturing

Retail

Public

Top GenAI Tasks & Use Cases:

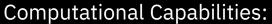
- Q&A: Customer service & service desk, digital concierges, etc.
- Entity Extraction: Extract logistic information (addresses, products), medical information (diseases, treatments, medication), claim codes, locations, etc.
- Content Generation: Generate marketing briefs, reports for fraud analyses, IT issues & remediation steps, SQL for connecting to data on IBM Power, etc.
- Summarization: Summarize contracts, policies, regulations, medical reports, service tickets, etc.
- Process Flow Automation: Work order processing & PO processing using document digitalization & analysis, etc.

Top Classical ML Use Cases:

(time series analysis, regressions, decision trees, random forests, SVMs, clustering, ...)

- Fraud & anomaly detection
- Demand forecasting
- Supply chain and inventory management
- Loan / investment risk analysis
- Predictive maintenance

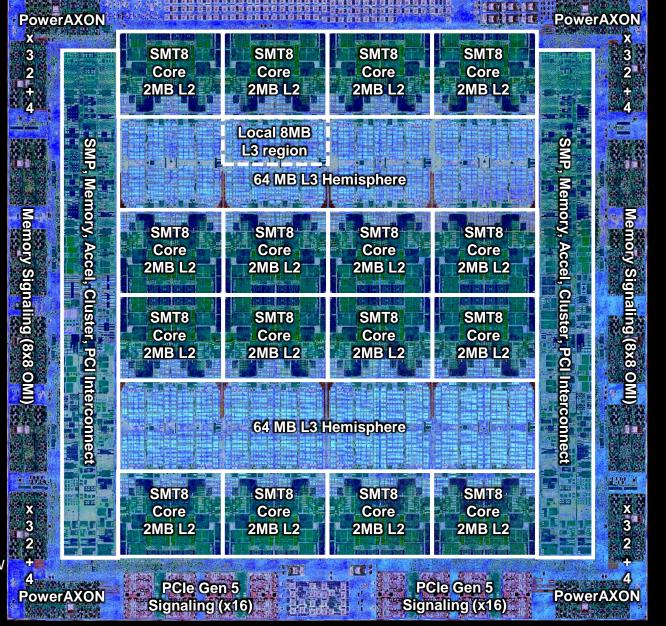
Additional Top Use Cases:


- Computer Vision Inferencing
 - Manufacturing: visual quality inspection
 - Health care: Computer aided image analysis (e.g., cancer screening)
 - Law & Order: Security control, queue management, check out desks
 - Retail: Shelf stocking, produce spoilage
- Audio processing
 - Voice-to-Text & Text-to-Voice: improved digital concierges & audio insights

Power10 Processor Chip

Technology and Packaging:

- 602mm² 7nm Samsung (18B devices)
- 18 layer metal stack, enhanced device
- Single-chip or Dual-chip sockets (New)



- Up to 15 SMT8 Cores (2 MB L2 Cache / core)
- Up to 120 MB L3 cache (low latency NUCA mgmt)
- Enterprise performance focus:
 - 1.3x core performance relative to POWER9
 - 1.2x thread strength relative to POWER9
 - 4x L2 cache, 4x MMU / core relative to POWER9
 - 4x crypto engines / core relative to POWER9
- AI computational focus MMA (Matrix Math Acceleration)
 2x general SIMD / core relative to POWER9
 4x matrix SIMD / core relative to POWER9
 New AI instructions and data types

Robust Data Plane:

- 2 TB/s raw (32 GT/s) PowerAXON + OMI signaling
- SMP interconnect for up to 16 sockets
- 2.2x OMI memory bandwidth relative to POWER9 (New)
- 64TB OMI DDR4 large system memory capacity (New)
- x64 PCIe Gen5 / DCM: 2x bandwidth relative to POWER9 (New

Vocabulary, notions and components related to Al and Gen Al

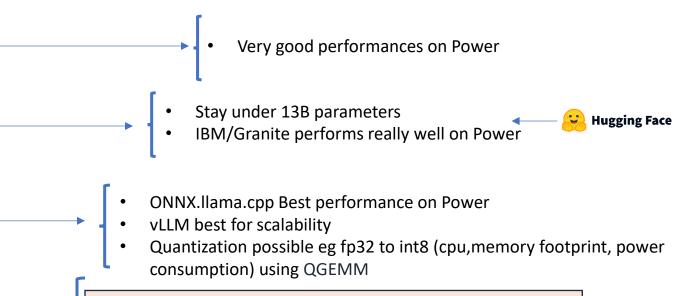
ISV solution, Python Application, In house application

VectorDB (Milvus, Chroma..)

LLM:

TinyLlama,microsoft/phi2,mistralai/mistral,ibm/granite-v2 *Llama 2 (7B)*

ONNX, vLLM, llama.cpp, Pythorch (runtimes/libraries, inference server)


Open source Package management (anaconda, micro mamba..)

RHEL/OCP
→ RHEL 9.2 LPAR

PowerVM Hypervisor (Layer 4)

IBM Power10 (Layer 5) → \$1024, 2x24 Cores, 4TB RAM MMA

Exemple of full stack

CondaForge Packages

RocketCE Packages (Python, Pythorch..)

Gen AI differents scenarios examples

Scenario 1: Summarization, RAG large input vs. small output

Please summarize the following in 1-2 sentences:

The sun was setting behind the mountains, casting a golden glow across the sky. The air was crisp, with a slight breeze rustling through the trees. Birds chirped their evening songs as they returned to their nests. Down by the river, the water shimmered in the fading light, reflecting the colors of the sunset. A family of deer emerged from the forest, grazing peacefully in the meadow. In the distance, the sound of laughter and music drifted from a nearby village, where the community gathered for their nightly festivities. It was a serene scene, filled with the beauty of nature and the tranquility of the evening.

The scene describes a peaceful evening with the sun setting behind the mountains, birds chirping, a river shimmering in the fading light, deer grazing in a meadow, and the sounds of a nearby village gathering for festivities, evoking a sense of tranquility and the beauty of nature.

Sequence Length (input): 1024 tokens Generated Token (output): 200 tokens

Scenario 2: Code/Text Generation small input vs. large output

- Write a 200 words marketing campaign about IBM!
- "Unlocking Innovation with IBM: Your Trusted Partner in Technology"

IBM, a global leader in technology and innovation, is your go-to partner for unlocking the full potential of your business. With a legacy of over a century of excellence, IBM has consistently delivered cutting-edge solutions that have redefined industries and propelled businesses to new heights.

From cloud computing to artificial intelligence, blockchain to cybersecurity, IBM offers a comprehensive suite of products and services tailored to meet the evolving needs of businesses in today's digital age. Our commitment to innovation and research ensures that we stay ahead of the curve, providing you with the latest technologies to drive success and growth.

But IBM's impact goes beyond technology - we are dedicated to making a positive difference in the world. Through initiatives like the IBM Corporate Service Corps and IBM Impact Grants, we are actively working to address societal challenges and create a more sustainable future for all.

Partner with IBM and experience the power of innovation and excellence. Let us help you navigate the complexities of the digital world and achieve your business goals with confidence. Trust IBM to be your trusted partner in technology - together, we can unlock endless possibilities and drive innovation like never before. Contact us today and let's embark on a journey towards a brighter, more connected future with IBM.

Sequence Length (input): 32 tokens Generated Token (output): 512 tokens

Gen AI differents scenarios

Scenario 3: Q&A, Translation same input vs. same output

- What is 100 meters in feet?
- 100 meters is approximately equal to 328 feet.
- Without too many additional information please let me know who was the first man on the moon.
- The first man on the moon was Neil Armstrong.
- In which country was the FIFA world cup 2010 held, who scored the goal/s?
- The FIFA World Cup 2010 was held in South Africa. In the final match, the goal was scored by Andrés Iniesta of Spain, securing Spain's victory over the Netherlands with a score of 1-0.

Sequence Length (input): 64 tokens Generated Token (output): 64 tokens

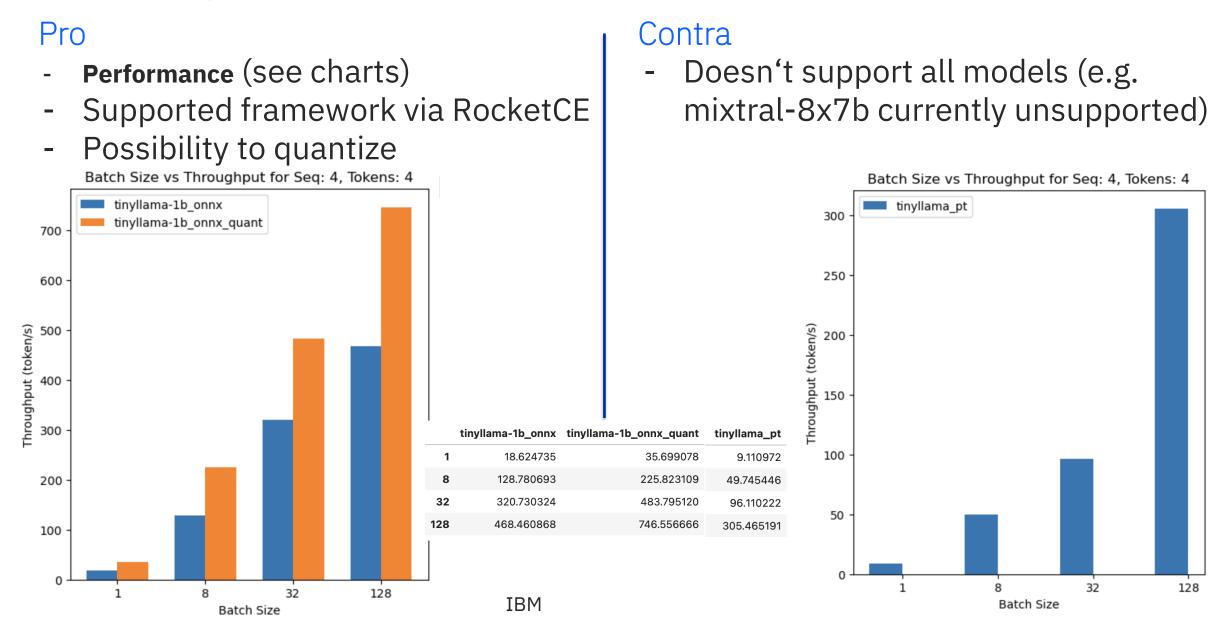
Scenario 4: Entity Extraction Large input vs. small output

Aeva, a Mountain View, California-based lidar company started by two former [Company] [Location]

Apple engineers and backed by Porsche SE, is merging with special purpose [Company] [Company]

acquisition company InterPrivate Acquisition Corp., with a post-deal market [Company]

valuation of \$2.1 billion.
[Monetary Value]


Sequence Length (input): 512 tokens Generated Token (output): 4 tokens

Understanding LLMs Key Metrics

- **1.Time To First Token (TTFT)**: How quickly users start seeing the model's output after entering their query. Low waiting times for a response are essential in real-time interactions, but less important in offline workloads. This metric is driven by the time required to process the prompt and then generate the first output token.
- **2.Time Per Output Token (TPOT)**: Time to generate an output token for *each* user that is querying our system. This metric corresponds with how each user will perceive the "speed" of the model. For example, a TPOT of 100 milliseconds/tok would be 10 tokens per second per user, or ~450 words per minute, which is faster than a typical person can read.
- 3. Latency Decode: The overall time it takes for the model to generate the output tokens.
- **4.Latency**: The overall time it takes for the model to generate the full response for a user. Overall response latency can be calculated using the previous two metrics: latency = (TTFT) + (TPOT) * (the number of tokens to be generated). Latency = Prefill Latency + Latency Decode
- **5.Throughput**: The number of output tokens per second an inference server can generate across all users and requests.

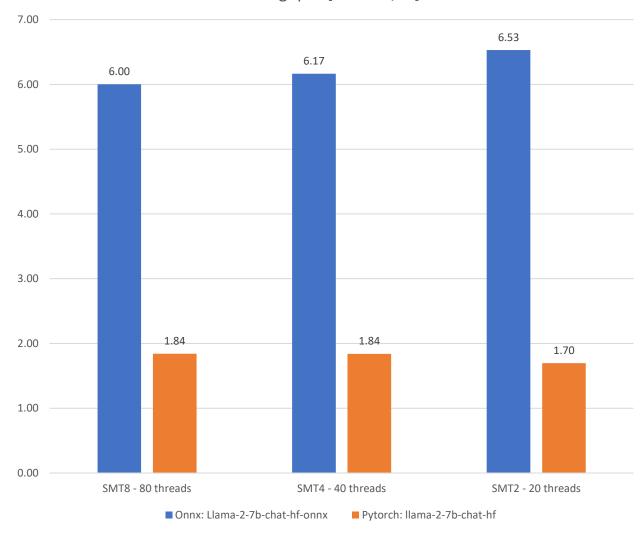
Phase 1 (Open Source stack) – Why using ONNX...

...and not pure PyTorch like most applications do?

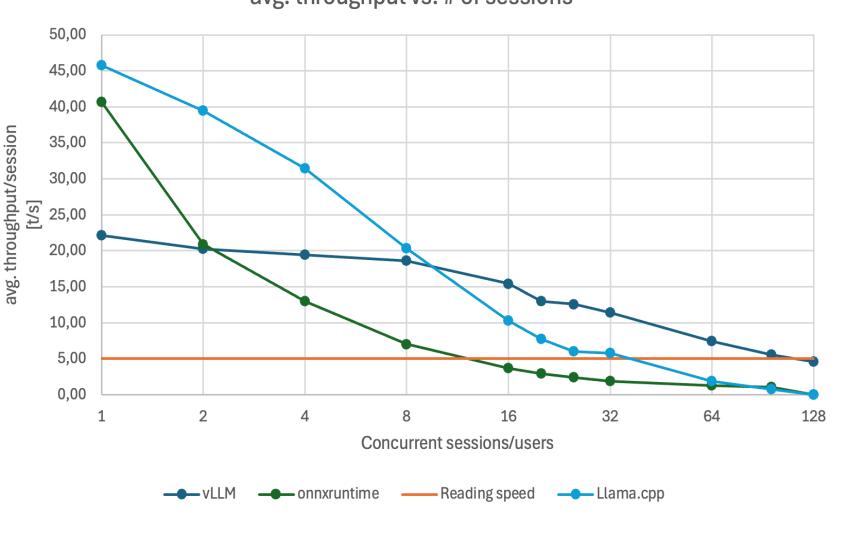
128

11

ONNX vs PyTorch runtime

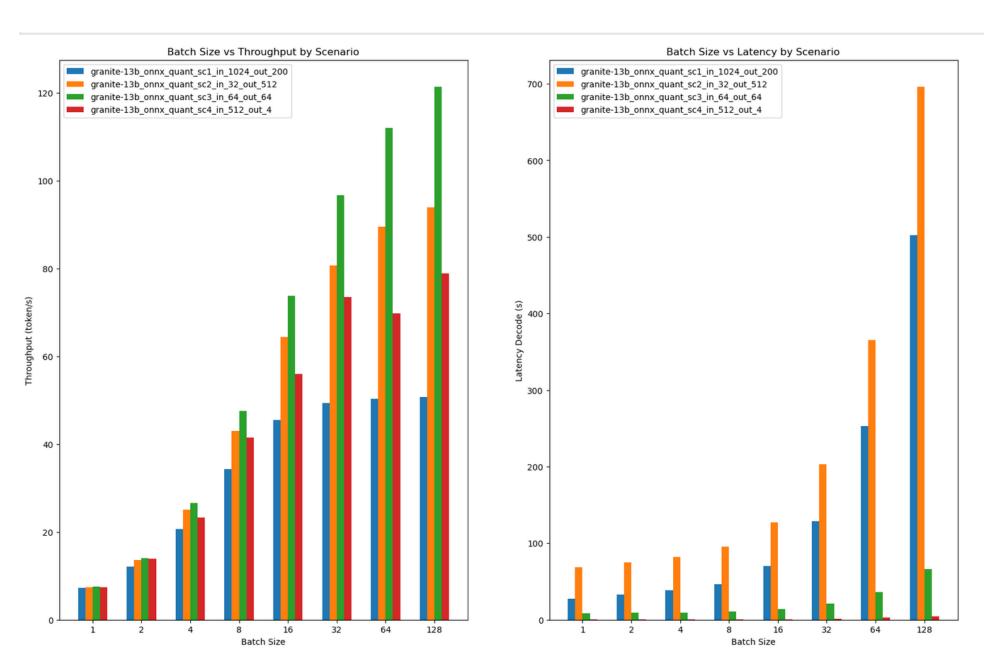

SITUATION

- Onnx and Pytorch runtime with MMA optimization
- Llama2-7B-chat model (FP32)
- Input prompt 7 tokens (batch_size=1)
- Output 128 tokens
 - Transformers and Optimum library
 - Onnx runtime, compile from source code or Conda
 - Pytorch from Conda Rocketce channel


Recommendation

- Use Onnx runtime and SMT=2 → higher throughput
- Onnx runtime utilize more MMA instructions
- For Onnx you can specify session options e.g number of threads for inference and thread affinity – NUMA

Power10 E1080 - 10 cores, 1 NUMA node throughput [tokens / s]


P10 S1024 8cores avg. throughput vs. # of sessions

Key Observations

- Onnxruntime and llama.cpp have their sweetspot for single user/fewer users
- vLLM is the most stable inference engine and has the flattest decrease with increasing concurrency
- Focus on <u>vLLM</u> to align with IBM strategy as this will be the backend of <u>watsonx.ai</u>

Test results Granite-v2 13B

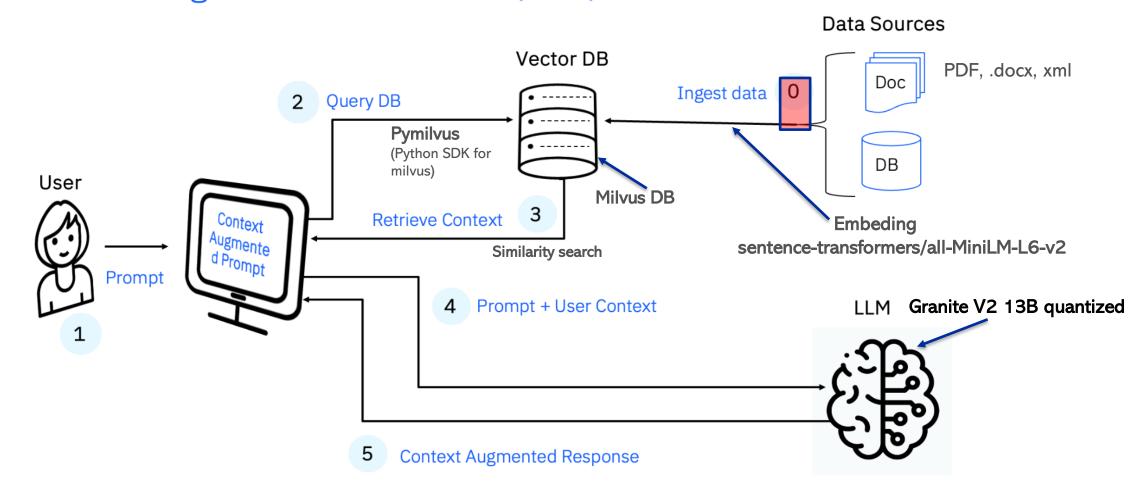
Scenario 1:

large input vs. small output (Summarization, RAG)

Scenario 2:

small input vs. large output (Code/Text Generation)

Scenario 3:


same input/output sizes (Q&A, Translation)

Scenario 4:

large input vs. small output (Entity extraction)

Personalize GenAI without re-train a Model: RAG

Adapt models to your domain via Retrieval Augmented Generation (RAG)

Vector Databases can make searching much more flexible

Traditional search typically represents data by using discrete tokens or features, such as keywords, tags or metadata. Traditional searches rely on exact matches to retrieve relevant results. For example, a search for "smartphone" would return results containing the word "smartphone."

Vector representations enable similarity search. For example, a vector search for "smartphone" might also return results for "cellphone" and "mobile devices."

[0.52, 5.12, 9.31...] **300 DIMENSION VECTOR** REPRESENTATION BANANAS + **BOATS GREEN APPLE** SHIPS **PEARS** FOOTBALL **X**emnia

IBM Power / Common Benelux / November 18th, 2024 / © 2024 IBM Corporation

https://www.xomnia.com/post/an-introduction-to-vector-databases-for-beginners/

Picking a vector database: a comparison and guide for 2023

	Pinecone	Weaviate	Milvus	Qdrant	Chroma	Elasticsearc h	PGvector
Is open source	×					×	\checkmark
Self-host	×				✓	\checkmark	\checkmark
Cloud management	~	✓	☑	~	×	~	(✓)
Purpose-built for Vectors			~	✓	$\overline{\checkmark}$	×	×
Developer experience	4 4 4	4 4	4 4	4 4	4 4	4	4
Community	Community page & events	8k☆ github, 4k slack	23k☆ github, 4k slack	13k☆ github, 3k discord	9k☆ github, 6k discord	23k slack	6k☆ github
Queries per second (using text nytimes- 256-angular)	150 *for p2, but more pods can be added	791	2406	326	?	700-100 *from various reports	141
Latency, ms (Recall/Per centile 95 (millis), nytimes-256- angular)	1 *batched search, 0.99 recall, 200k SBERT	2	1	4	?	?	8

	Pinecone	Weaviate	Milvus	Qdrant	Chroma	Elasticsearc h	PGvector
Supported index types	?	HNSW	Multiple (11 total)	HNSW	HNSW	HNSW	HNSW/IVFFl at
Hybrid Search (i.e. scalar filtering)	▽	▽	▽	▽	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	▽
Disk index support	~		✓		~	×	~
Role-based access control	✓	×		×	×	~	×
Dynamic segment placement vs. static data sharding	?	Static sharding	Dynamic segment placement	Static sharding	Dynamic segment placement	Static sharding	-
Free hosted tier			\checkmark	(free self- hosted)	(free self- hosted)	(free self- hosted)	(varies)
Pricing (50k vectors @1536)	\$70	fr. \$25	fr. \$65	est. \$9	Varies	\$95	Varies
Pricing (20M vectors, 20M req. @768)	\$227 (\$2074 for high performanc e)	\$1536	fr. \$309 (\$2291 for high performance)	fr. \$281 (\$820 for high performance)	Varies	est. \$1225	Varies

Known to work on IBM Power Known not to work on IBM Power (yet)

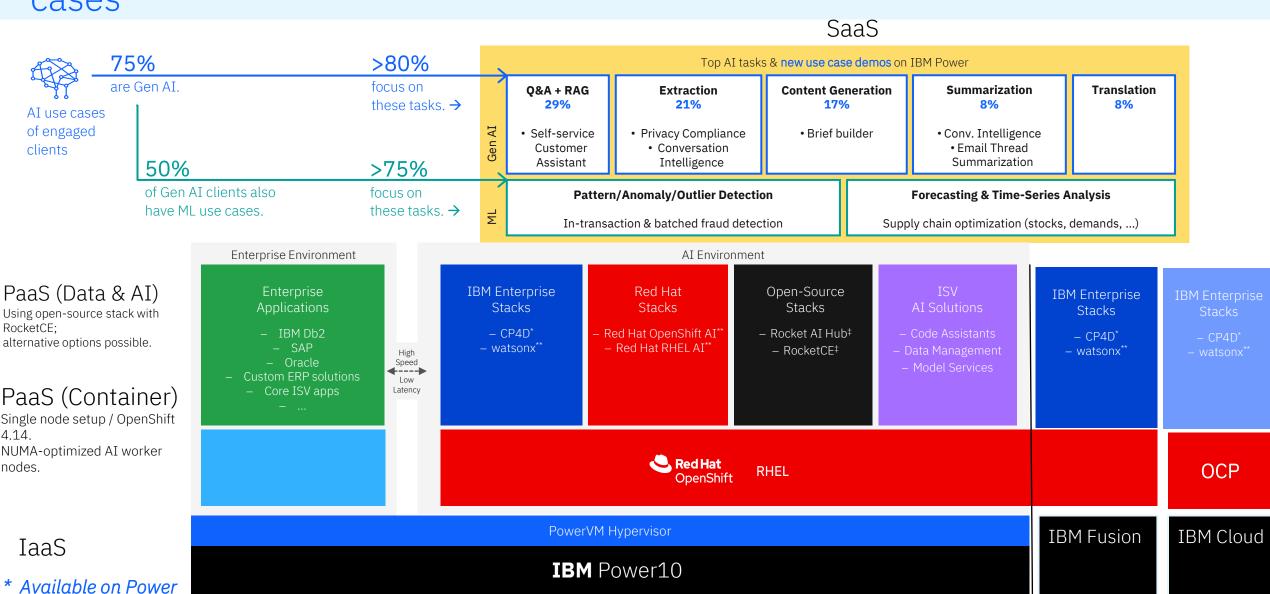
Example of models running on Power (not an exhaustive list)

Models ranging from 1B...13B parameters are appropriates for Power

- LLMs for Inferencing
 - 1. TinyLlama (1B)
 - 2. microsoft/phi-2 (3B)
 - 3. mistralai/mistral (7B)
 - 4. ibm/granite (13b)
 - 5. Llama 2 (7B)
 - 6. Lot more

A model is a file module, that includes the parameters weight, model architecture the size depends on the parameter's numbers

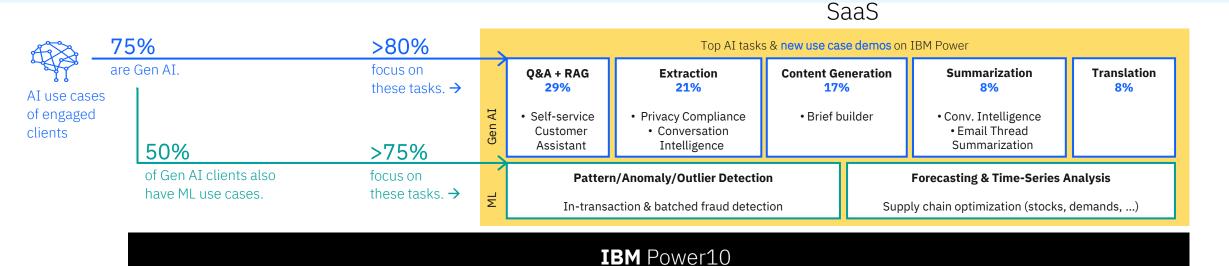
indemnified models?


Transformers: "Paris is a very beautiful city. I lived there for 3 years; it was a very enriching experience, and I loved it. I made great progress in history, but most importantly, it taught me how to speak?"

- Sentence transformers (for embedding creation)
 - 1. ST/all-MiniLM-L6-v2
 - 2.

<u>sentence-transformers</u> model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

- Vector DB that runs on Power
 - 1. ChromaDB
 - 2. Milvus
 - 3. ...


Reference Architecture# for AI on Power, focusing on top client use cases

can be done either on-premise or off-premise

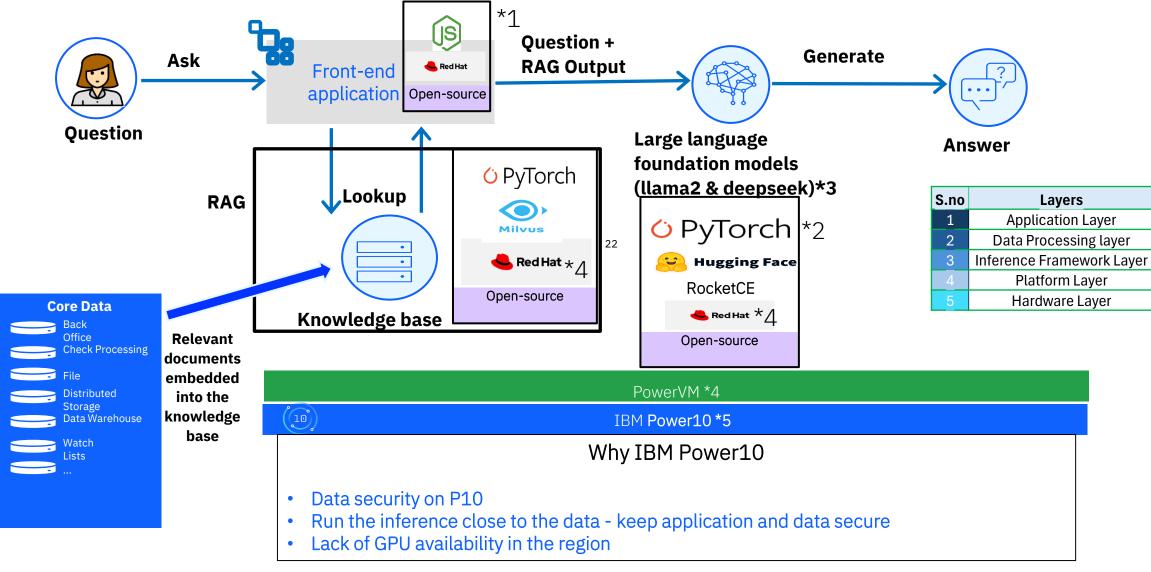
** In plan for Power

Reference Architecture# for AI on Power, focusing on top client use cases

Conversational Ai use cases

- output streaming
- SLO output adult reading rate 5 words/sec

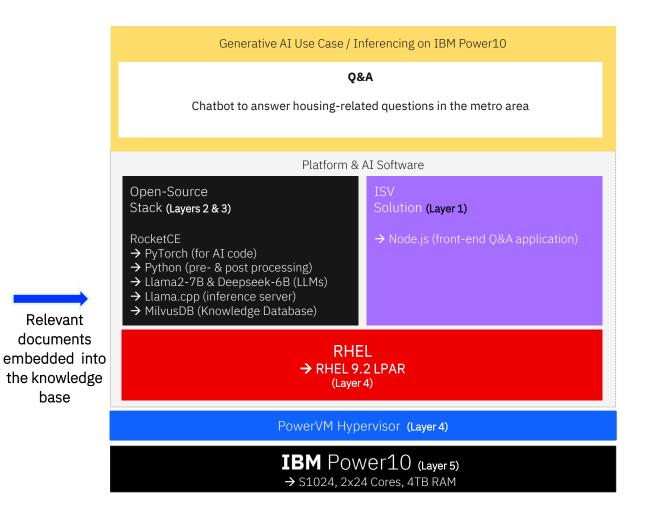
Batchable Ai use cases (API)


- output streaming
- SLO output adult reading rate 5 words/sec

GenAI & ML Stack – Layer view

S.no	Layers	Use	Typical Components# for GenAI_	Typical Components for Machine Learning (Open-source , Red Hat / IBM CP4D)
	Application	Application	Node.js, React.js, JAVA, Python	Node.js, React.js, JAVA, Python
1		API Gateway	FastAPI (Python), 3Scale (RH)	FastAPI(Python), 3Scale / WatsonML
	Layer	Model Serving Service	FastAPI, Container Image	FastAPI, Container Image / WatsonML
		Pre-processing	Python (RocketCE)	Python (RocketCE) / Watson Studio
2	Data Processing layer	Tokenization (Hugging Face Tokenizers)	Huggingface (no pid)	Huggingface (no pid) / Analytics Engine for Apache Spark
		Post-processing	Python (RocketCE)	Python (RocketCE) / Watson Studio
	Training (for ML)	Llama2 (7B/13B)**		
3	& Inference	Pytorch, ONNX, Tensorflow	RocketCE	RocketCE / Watson Studio (Jupyter or AutoAI)
4	Platform layer	Operating System	RHEL or Openshift	RHEL or Openshift / Openshift only
		Virtualization	PowerVM	PowerVM
	Hardware Layer	Power10	Compute – per LPAR – 1 socket 12 cores/14 cores S10xx or 15 cores E10xX	Compute – per LPAR – 1 socket 2-6 cores S10xx or 1-2 cores E10xX / <u>Use CP4D sizing tool **</u>
5		10 GbE network interface	Network -10 GB	Network -10 GB
		NVME SSD for storing model weights	Storage – 2x disks (excl OCP requirements)	Storage – 2x disks (excl OCP requirements)

Client Use Cases – Chat Bot/Digital Assistant with GenAI (RAG)

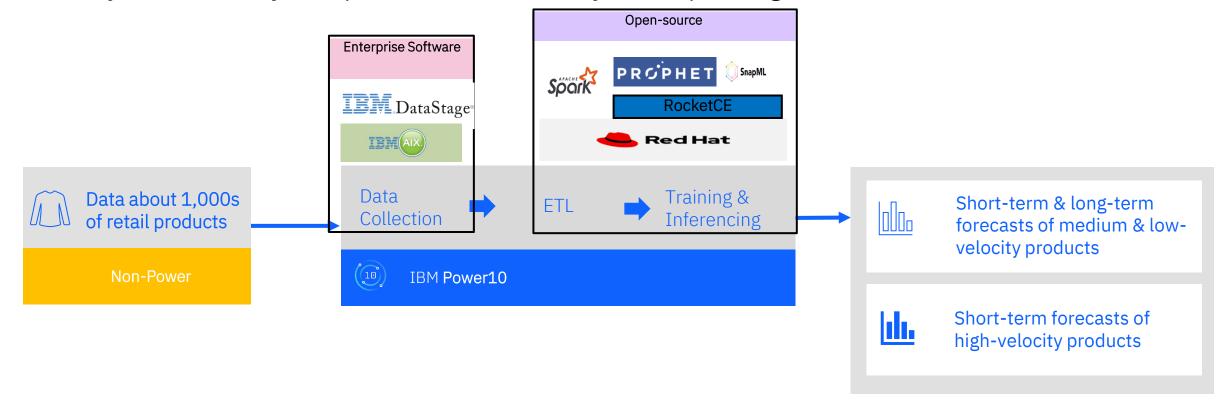

Chatbot for helping customers with queries on housing data in APAC/Middle east

Government entity in APAC/middle east

Reference Architecture for specific AI use cases — Chat Bot

Government Agency in APAC/Middle east

Core Data

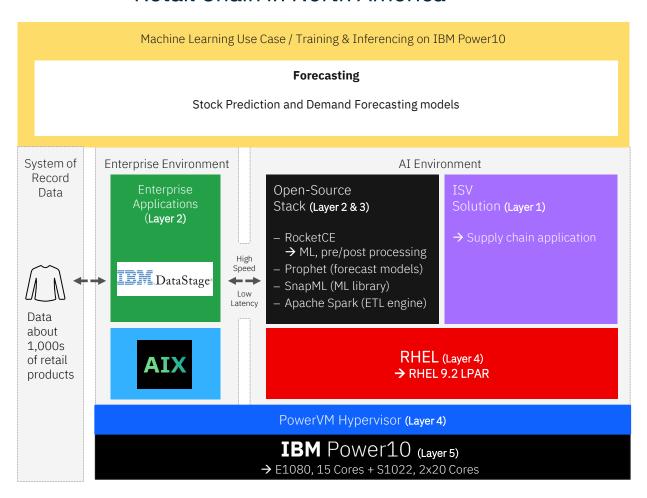

Check Processing

Data Warehouse

S.no_	Layers			
1	Application Layer			
2	Data Processing layer			
3	Inference Framework Layer			
4	Platform Layer			
5	Hardware Layer			

Client Use Cases – Demand forecasting

Forecasts for thousands of retail products & retail stores for stock planning



Why IBM Power10

- Very good throughput for timeseries-based forecasting
- Better cost/performance (vs. x86) for data collection due to consolidation

Reference Architecture for specific AI use cases – Machine Learning

Retail Chain in North America

S.no	Layers			
1	Application Layer			
2	Data Processing layer			
3	Training and Inference (ML) Framework Layer			
4	Platform Layer			
5	Hardware Layer			

Document

Hi I am Ravi Dube. I am writing to you to report an unauthorised transaction on my credit card. On March 30th 2023, I noticed a charge of \$1,000 on my credit card statement that I did not authorise. The transaction was made at a restaurant in New York, while I was in California on that day. I am concerned about the security of my account and I would appreciate if you could investigate this matter promptly. Please contact me at my phone number (123)456-7890 or email me at ravi.dube@email.com to provide me with an update on the investigation. My card number is 3572267594198019. I look forward to hear from you soon.

Sample text

Upload File

Remove PII & load into ERP

(i) Allowed file types: .txt & File size limit to upload: 50Kb

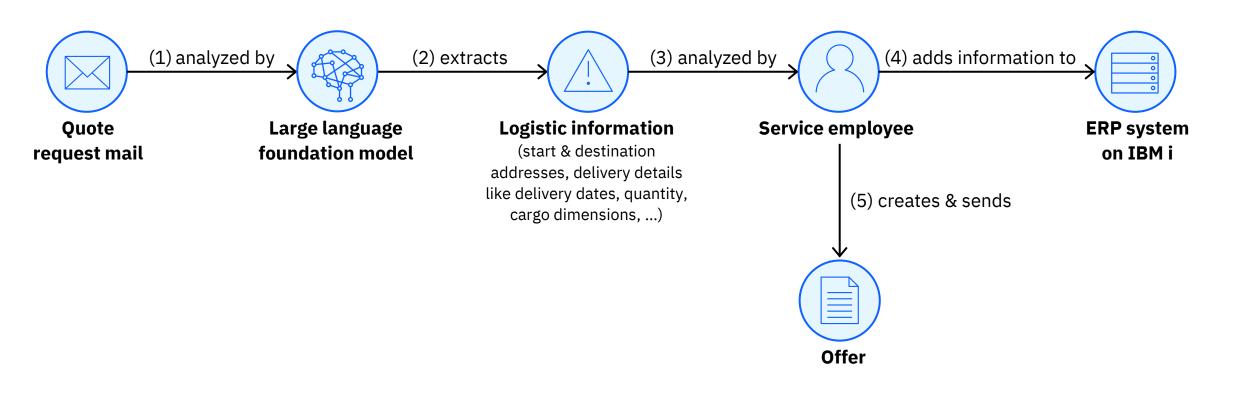
PII entities

Ravi Dube: Person,

(123)456-7890: PhoneNumber, ravi.dube@email.com: Email,

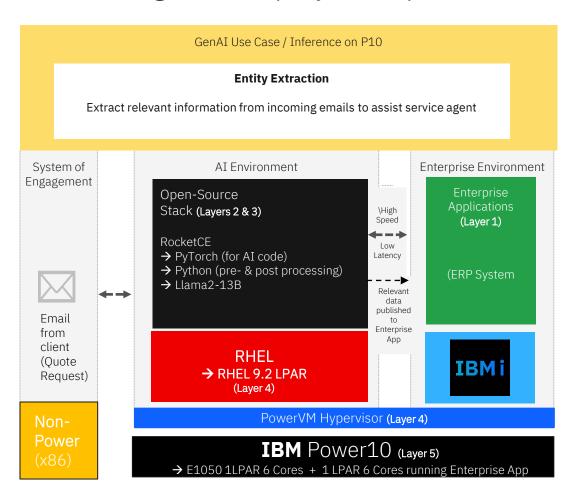
3572267594198019: CardNumber,

New York: Location, California: Location

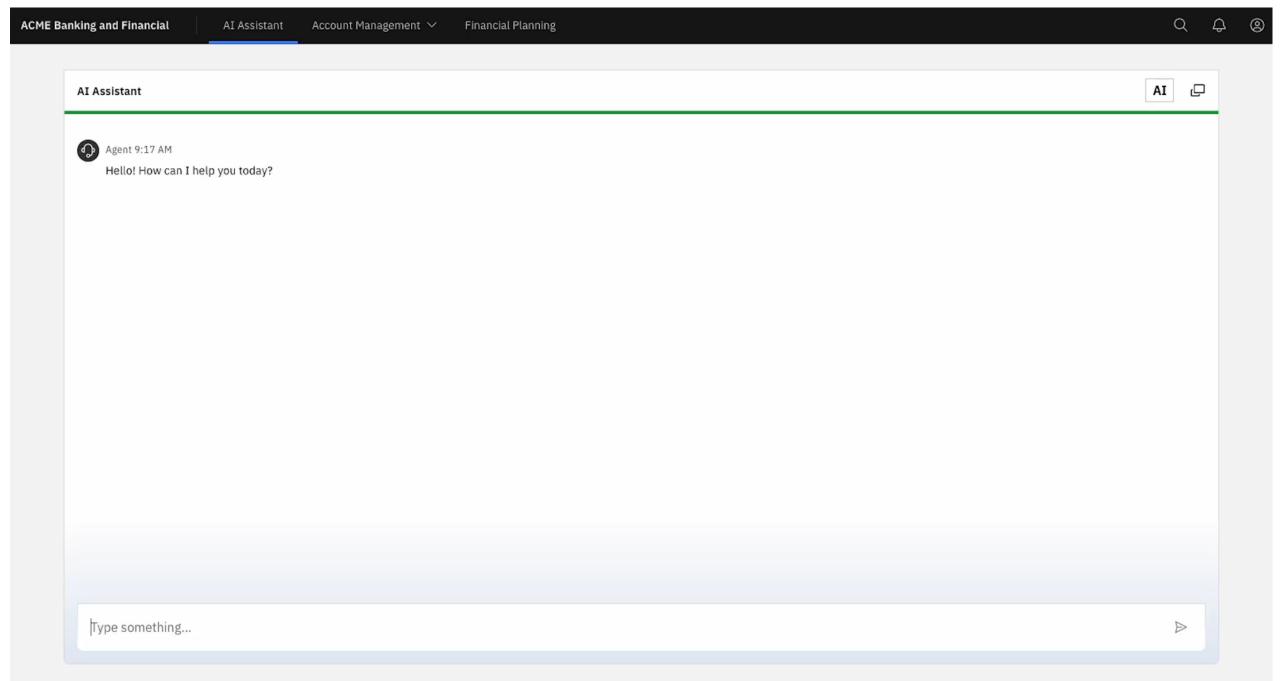

From mails to ERP system

IBM Power10 customer extracts information from mails asking for quotes, puts those information into an ERP system on IBM i, and creates an offer.

["Erfahrungsbericht: Generative KI bei Hans Geis auf Power10": www.sva.de/de/events/ifutureday]


Pattern 1:

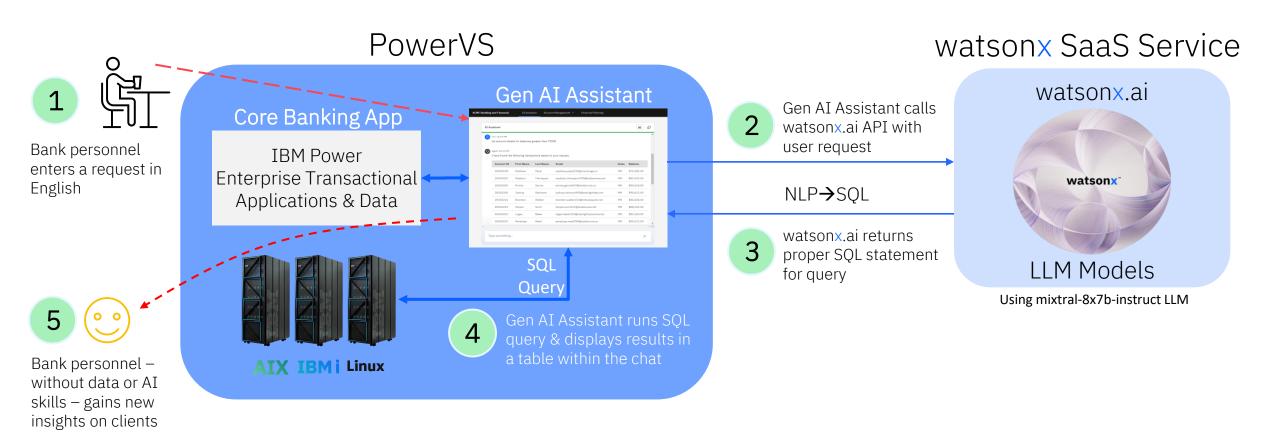
Using Gen AI to transform unstructured data (text) into structured data (information) that is ingested to IBM Power.



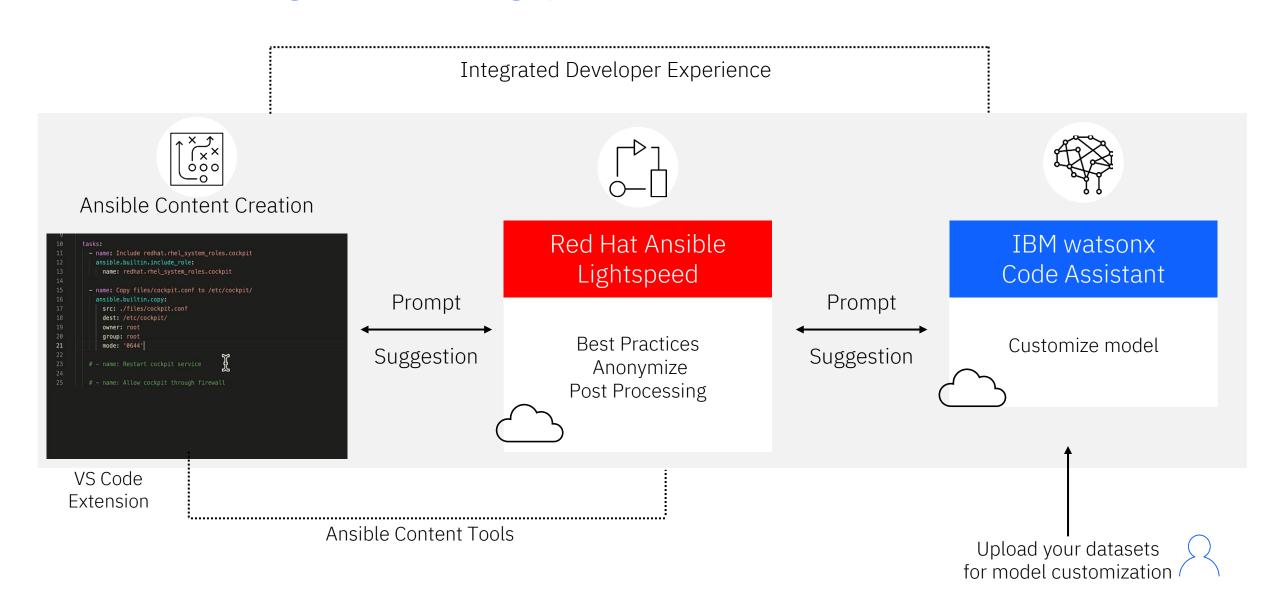
Reference Architecture for specific AI use cases – Entity Extraction

Logistics Company in Europe

S.no	Layers			
1	Application Layer			
2	Data Processing layer			
3	Inference (GenAI) Framework Layer			
4	Platform Layer			
5	Hardware Layer			


Demo Workflow - PowerVS + watsonx SaaS

Digital labor use cases:


- Bank fraud investigator using natural language to get fraud transaction details
- Bank marketing manager to find high value clients for an investment seminar

Pattern 2:

Using Gen AI to query information from IBM Power to gain insights easily.

Automation develop Ansible playbook with Lightspeed and watsonx code assistant Power can be integrated and being "piloted"

Get started with AI and watsonx with IBM Power

Deploy & manage foundation models securely.

Select & download from a repository of 1M+AI models

Deploy and manage foundation models on IBM Power

Leverage best-of-breed opensource models and software technologies to build a scalable end-to-end AI workflow

- **Q&A** Chatbot
- **Email Summarization**
- **Entity Extraction**

Embed foundation models into apps using the watsonx.ai SDK.

Application on IBM Power (Linux | AIX | IBM i)

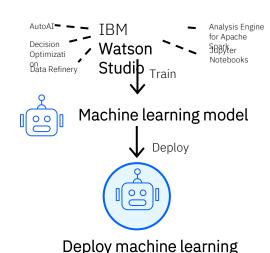
Embed AI quickly, in a secure and resilient environment, close to your mission critical data and transactions

- Report generation
- Citizen services
- Knowledge management

Consume watsonx services from customized ecosystem apps.

Generate Ansible playbooks for IBM i & AIX.

foundation models.



Use watsonx-embedded SAP applications with IBM Power.

Deliver new services faster using generative AI capabilities embedded in familiar ecosystem apps

- Asset management
- Code generation
- Accounting automation

Train & deploy ML models within a single AI studio.

Train, tune, and inference machine learning models with on-chip acceleration without purchasing GPUs

model on IBM Power10

- Fraud detection
- Risk underwriting
- Demand forecasting

Two recent announcement for AI and IBM Power

Code Assistant for RPG for IBM i https://www.ibm.com/docs/en/announcements/s tatement-direction-code-assistant-rpg

"Statement of direction

IBM intends to deliver a code assistant for RPG - a generative AI tool which helps developers of IBM i software understand existing RPG code, create new RPG function using natural language description, and automatically generate test cases for RPG code."

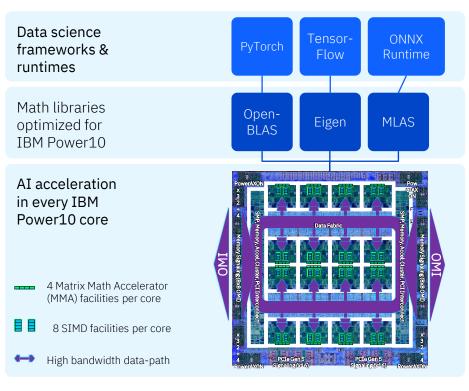
IBM Spyre off-chip accelerator on Power platform https://www.ibm.com/docs/en/announcements/s tatement-direction-spyre-accelerator-power-platform

"Statement of direction

IBM intends to incorporate the IBM Spyre accelerator in future Power offerings to provide additional AI compute capabilities. Working together, IBM Power processors and IBM Spyre accelerator will enable the next generation infrastructure to scale demanding AI workloads for businesses."

Disclaimer: Statements by IBM regarding its plans, directions, and intent are subject to change or withdrawal without notice at the sole discretion of IBM. Information regarding potential future products is intended to outline general product direction and should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for IBM products remain at the sole discretion of IBM.

IBM Spyre Accelerator


The <u>IBM Spyre Accelerator</u> is a purpose-built enterprise-grade accelerator offering scalable capabilities for complex AI models and generative AI use cases. The new accelerator features 32 individual accelerator cores onboard, and each Spyre is mounted on a PCIe card.

Jointly designed by IBM Research and IBM Infrastructure, Spyre's architecture is designed for more efficient AI computation. Notably, the chip will send data directly from one compute engine to the next, leading to an efficient use of energy. This family of processors also uses a range of lower precision numeric formats (such as int4 and int8), to make running an AI model more energy efficient and far less memory intensive.

More details on our plans for the IBM Spyre Accelerator will be revealed in 2025.

 $https://www.ibm.com/docs/en/announcements/statement-direction-spyre-accelerator-power-platform\\ https://newsroom.ibm.com/blog-ibm-power-modernizes-infrastructure-and-accelerates-innovation-with-ai-in-the-year-ahead$

Accelerate AI Efficiently with AI Optimized Hardware

Each core has four MMA (Matrix Math Accelerator) facilities to accelerate matrix calculations that are used in many common AI workloads

Power10 MMA Overview

Feature	AI Method	GPU	P10 with MMA	
Training	Deep Learning	Best Fit (cost-perf)	Limited Benefit	
	Machine Learning	Limited Benefit (cost-perf)	Best Fit (cost-perf)	
	Foundation Model (like GenAI)	Best Fit (cost-perf)	Not Optimal	
Re-training / Fine-tuning	Deep Learning	Best Fit (cost-perf)	Limited Benefit (cost-perf)	
	Machine Learning	Not Applicable	Not Applicable	
	Foundation Models (like GenAI)	Best Fit (cost-perf)	Limited Benefit (cost-perf)	
Prompt	Deep Learning	Not Applicable	Not Applicable	
Tuning (including RAG pattern)	Machine Learning	Not Applicable	Not Applicable	
	Foundation Model (like GenAI)	Limited Benefit (cost-perf)	Best Fit (cost-perf)	
Inference	Deep Learning	Limited Benefit (cost-perf)	Best Fit (cost-perf)	
	Machine Learning	Limited Benefit (cost-perf)	Best Fit (cost-perf)	
	Foundation Model (like GenAI)	Limited Benefit (cost-perf)	Best Fit (cost-perf)	
SW Maintenance		Need to update GPU specific SW (CUDA, cuDNN, etc.)	Maintained by IBM / Partner	

What is RocketCE and Rocket AI Hub

RocketCE is a distribution of over 200 Power-optimized packages for AI, such as TensorFlow, PyTorch, and Python.

1. **OpenCE**: an AI open-source community championed by IBM for simplifying the build of 200+ Power-optimized packages for AI, including build script and actual community builds available via CONDA..

2. RocketCE

RocketCE leverages the base OpenCE packages and adds the P10 MMA specific libraries to create packages that are optimized for Power 10 (Tensorflow, PyTorch, Python,etc). RocketCE packages can be consumed via Conda or Red Hat Openshift Containers (UBI Images).

What is RocketAI Hub

Enhancement to the RocketCE repository by providing the Rocket P10 MMA SW in containers and adding additional tooling like Kubeflow that helps data science teams automate end-to-end data science workflows.

** RocketCE and RocketAI Hub is available with Enterprise support from Rocket

How does it help?

- 1. Allows Data Scientists on the customer or ISV side to use the same tools on Power for AI that they might already be familiar with on the non-Power platforms.
- 2. Make it easy to move AI code built on a non-Power platform onto Power if there is version compatibility. For ex: If the code is built using Tensorflow v2.x on Intel(x86), we can leverage the Tensorflow v2.x from RocketCE to run the same code on Power without making changes to the Python code.
- 3. RocketCE packages are specifically enabled to leverage the MMA on P10.

How does a customer access it?

To access these AI tools, visit the <u>RocketCE channel</u> on Anaconda and for Container images see <u>Quay repository</u>.

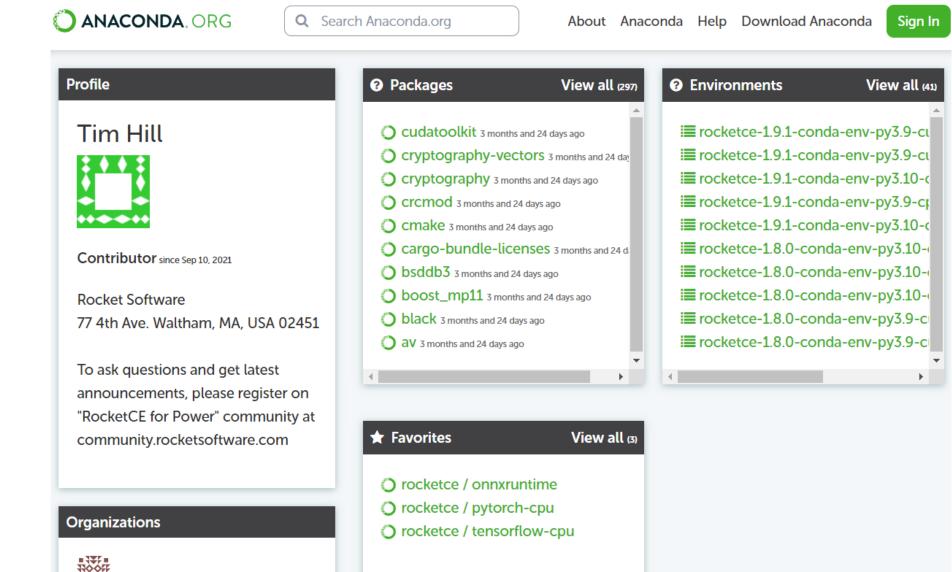
Reference Links:

RocketCE Announcement:

Announcement Letter Link

RocketAI Hub Announcement:
Announcement Letter Link

FIND Open Source Application availability on IBM Power link:


Find open source packages built for IBM Power

FIND ISV support on IBM Power link:

https://www.ibm.com/power/resources/isv/

Rocket Software hosts prebuilt versions of the Open-CE at conda channel <u>here</u>. This channel provides packages for Power architecture(ppc64le)."

Enterprise Support available (more on that in a moment), but you can use these without support without charge.

Credit to Marvin Gießing

This is Marvin Gießing, who used to work in IBM Power, but is now part of our IBM Client Engineering team.

Marvin wrote this article, as a demo at the IBM TechXchange event in Barcelona earlier this year:

https://github.com/mgiessing/bcn-lab-2084

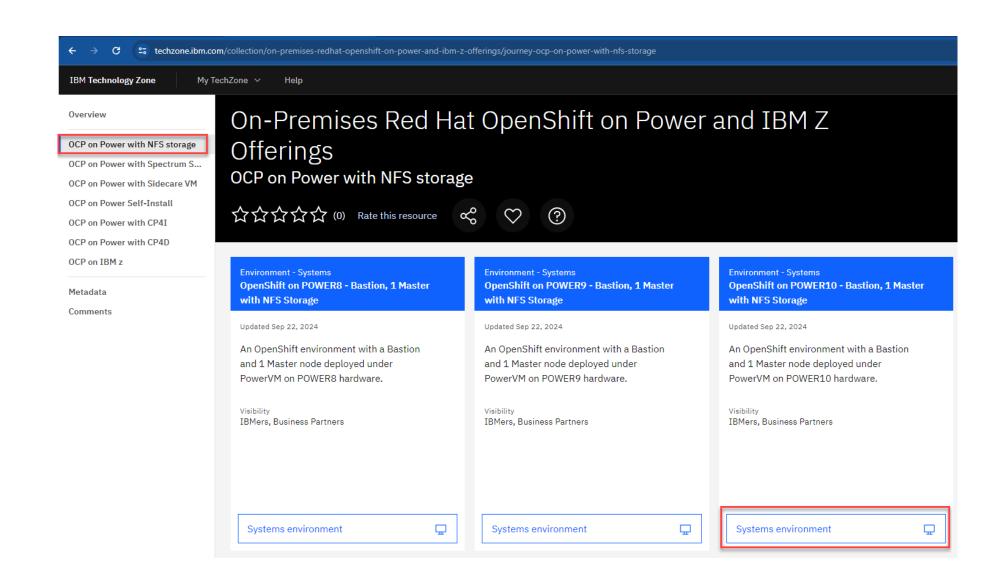
Another member of the IBM Power Global team, Ashwin Srinivas, then joined a group of us in Prague and took us through that lab. I then went through it again later and have modified it slightly to work with IBM's Techzone environments.
IBMers and IBM Business Partners can therefore follow my steps using the forked copy of Marvin's work I have here: https://github.com/DSpurway/RAG-with-Notebook


Customers can work with their IBMers and BPs to see this too!

For Sales, BPs & Clients under NDA
Use Only

Currently Available
On-track

Uncommitted: Working it



IBM Techzone delivers "Show Not Tell" with IBM Technology

"Technology Zone is the single destination for our go-to-market teams and IBM business partners ecosystem to access on-demand and live environments to learn, build, show, and share the value of IBM solutions. Additionally, they can extend our certified base images and further customize them for test, education, demonstration, and pilot activities."

So, we start here:

https://techzone.ibm.com/collection/on-premises-redhat-openshift-on-power-and-ibm-z-offerings/journey-ocp-on-power-with-nfs-storage

