IBM Strategy

What's next in computing

Vincent Perrin IBM France Ecosystem CTO

Data, IT architectures & AI use multiply

Digital transformation leads to vast data and heterogenous IT, which is best navigated through hybrid cloud and AI

IT architectures become more heterogenous

- 90% of large companies use multi-cloud architectures¹
- 72% of companies run on both private infra and public cloud²
- 75% of enterprise data will be created on the edge by 25^3

O I O I $I \cup I \cup$ O I O IIOIO

Data volume, variety, and +velocity soar in magnitude

- 181 zettabytes of data will be generated annually by 2025^{4}
- 95% of businesses must manage unstructured data⁵
- Data volumes are exploding by 63% per month in organizations⁶

+

- AI transforms business models and operations
- 60-70% of employee time today could be automated using gen AI⁷
- 62% of execs say gen AI will disrupt how their org designs experiences⁸
- 72% of enterprises are seeing value from their AI initiatives within 3 months⁹

Enterprises need modern IT capabilities to manage this complexity and unlock innovation - and are turning to hybrid cloud and AI as the universal standard

Open-source application platform

Leading hybrid cloud application platform built on open-source innovation that enables organizations to build, deploy, and run applications at massive scale, wherever they run

Mature, enterprise grade platform with run rate of \$1.1B+; >4K global clients across industries

Provides a consistent platform for AI/ML workloads

Provides a proven, security-hardened (FIPS compliant) platform built on a core of Kubernetes and RHEL CoreOS

OpenShift Cloud Services help accelerate the move to public cloud with a fully managed service

leveraging leading projects including Kubernetes, Prometheus, Jenkins, and more

The **Forrester Wave**[™] recognizes OpenShift as the leading hybrid application platform

Multicloud container platforms¹

The future of Computing is **Bits + Neurons + Qubits**

Hybrid cloud brings them together

Bits

Hybrid Cloud

Neurons

What's next in computing

Qubits

Artificial Intelligence

Principles for Enterprise-Grade Generative AI

Targeted

Jpen

IBM's AI is transparent, publishing key details such as training dataset names

IBM's AI is responsible and governed

IBM²'s AI is designed for enterprise and targeted at business domains

Granite.13b: Training data governance funnel

Text Extraction

Two-thirds of collected data was removed according to IBM's governance process!

Remove Duplicates

Remove Hate, Abuse, Profanity

Remove Blocklisting URLs and Uninformative Content

6.48 Terabytes of extracted data

4.9 Terabytes of deduplicated data

3.79 Terabytes of usable data

2.07 Terabytes of data ready for tokenization

1T Tokens of data for training

Small, specialized models can outperform large, generalist models

ChatGPT + Post-Processing

watsonx Code Assistant

ChatGPT

Test accuracy (%): zero-shot performance with CodeNet* benchmark

Watsonx Code Assistant

IBM Large Speech Model produces lower Word Error Rate compared to OpenAI Whisper

watsonx

Scale and accelerate the impact of AI with trusted data, an open architecture, and seamless integration

er individuals to do work expert knowledge across a of business processes and ions	watsonx Orchestrate watsonx Assistant watsonx Code Assistant watsonx Orders	- -
grammatic interfaces to embed platform capabilities in ts and applications	Ecosystem integrations	
e generative AI and machine — tuned with your data — ponsibility, transparency and bility	watsonx watsonx.ai watsonx.governance watsonx.data	Foundation models Open Source <i>Huggi</i> Llama 2 <i>Meta AI</i> Geospatial <i>IBM + N</i> Granite <i>IBM</i>
data fabric services to define, e, manage, and deliver data to train and tune models	Data fabric services	
a consistent, scalable on based on open-source ogy	Red Hat OpenShift AI (<i>e.g.,</i> Ray, Pytorch)	

Nearly all available public data is now represented in foundation models

Less than 1% of all enterprise data is represented in foundation models

We've invented a new methodology: InstructLab

- Makes LLMs truly open-source with collaborative mode development
- Allow LLM to learn as humans do, using knowldege and skils
- Enable incremental skill teaching

Generate examples

High quality, hand-curated knowledge sources, plus a curated taxonomy of tasks with humangenerated examples for each.

Teacher model(s)

A teacher model generates a "curriculum" of millions of questions and answers for the taxonomies.

collaborative mode development ing knowldege and skils

https://instructlab.ai/

Critic model(s)

Critic models filter the questions for correctness and quality. Synthetic data is scanned for prohibited material.

Student model(s)

The student model is trained with the curriculum using a novel training approach.

Semiconductors Infrastructure

IBM Telum Family

Telum 1 (2020)

- Response time less than a millisecond for a volume of 100,000 transactions per second
- 7 nm
- Explosion of digital payments, Detecting fraud

Telum 2 (2024)

- 32 Al cores
- While Telum I offered 32MB of L2 cache per core, Telum II increased this by 40%, with virtual L3 and L4 caches growing to 360MB and 2.88GB, respectively

Exploring the future of hybrid cloud infrastructure

AI Infrastructure

IBM Vela: Our high-performing, cloud-native AI training stack running on the Red Hat OpenShift Container Platform

- ~900 petaflop fully software defined AI system with near (within ~5%) bare metal performance
- IBM's contributions to PyTorch enable 4.5x efficient training on large models (10B parameters) on commodity Ethernet

IBM Artificial Intelligence Unit

An entire chip dedicated to AI

- Chip architecture optimized for enterprise AI workloads
- Enabled for Foundation Models
- Enabled in the Red Hat software stack
- Integration into the IBM Watson software stack underway
- Supports multi-precision inference (& training) FP16, FP8, INT8, INT4, INT2
- Implemented in leading edge 5nm technology
 - 32 processing cores
 - 23 billion transistors

IBM NorthPole

- Brain inspired chip (Published in Science)
- Compared common 12nm GPUs and 14nm CPUs, NorthPole is 25 times more energy efficient
- On ResNet-50, NorthPole outperforms all major prevalent architectures — even those that use more advanced technology processes, such as a GPU implemented using a 4 nm process.

Quantum Infrastructure

IBM has the strongest quantum ecosystem advancing the field of quantum computing

since 2016

3T+

Circuits run on our systems

Quantum systems at IBM Quantum data centers

250 +75 +IBM Quantum Network Systems deployed worldwide since 2016 members

Global quantum data centers

Quantum systems at client-locations (by end of 2024)

26

Heron

133/156

qubit count

Tunable coupler architecture

I/O complexity on par with Osprey

Heron

R1: 133-qubit systems R2: 156-qubit systems

Tunable coupler architecture

R2: Includes ability to tune away two-level system defects during calibration

IBM Monte Carlo simulation

	IBM Sherbrooke Eagle	IBM Monte Carlo (Heron)
Gate error (best system)	0.6%-0.7%	0.3% – Best ~ 0.1
Crosstalk	High (qubit-qubit collisions)	Almost zero!
Gate time	500-600ns	90–100ns

Condor

Pushing the limits of scale & yield

1,121

Superconducting metal qubits

Chip wiring and layout enhancements

Predictive simulation enhancements

Development Roadmap

	2016–2019 🥥	2020 🥏	2021 🥥	2022 🥥	2023 🥥	2024	2025	2026	2027	2028	2029	2033
	Run quantum circuits on the IBM Quantum Platform	Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2 centric su will inclue logical qu the full pe quantum
Data Scientists						Platform						
						Code 🕹 assistant	Functions	Mapping Collections	Specific Libraries			General QC libra
Researchers					Middleware							
					Quantum 🔗 Serverless	Transpiler 👌 Service	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit
Quantum Physicists			Qiskit Runtime									
	IBM Quantum Experience	S	QASM3 📀	Dynamic 🥪 circuits	Execution 🔗 Modes	Heron う (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue (1B)
	Early 📀	Falcon	⊘	Eagle	S	Error Mitigation	Error Mitigation	Error Mitigation	Error Mitigation	Error Mitigation	Error Correction	Error Cor
	Canary 5 qubits	Benchmarking		Benchmarking		5k gates 133 qubits	5k gates 156 qubits	7.5k gates 156 qubits	10k gates 156 qubits	15k gates 156 qubits	100M gates 200 qubits	1B gates 2000 qul
	Albatross	27 qubits		127 qubits		Classical modular	Quantum modular	Quantum modular	Quantum modular	Quantum modular	Error corrected modularity	Error cor modulari
	16 qubits Penguin					Up to 133x3 = 399 qubits	Up to 156x7 = 1092 qubits	Up to 156x7 = 1092 qubits	Up to 156x7 = 1092 qubits	Up to 156x7 = 1092 qubits		
Executed by IBM	20 qubits											
) On target	53 qubits											

IBM **Quantum**

2033, quantum-supercomputers ude 1000's of qubits unlocking power of n computing

Merci

