
IBM DB2 for i
Temporal Database Support

Doug Mack

IBM Lab based Services

mackd@us.ibm.com

Use Cases of Temporal Data Management

Point in time and period of time queries

Track and analyze changes in your business
Easily compare data from two points or periods in time

Increased accuracy in time-based reporting

Effectively perform and trace data corrections
Record when the change was made

Auditing and compliance
Ability to show past data for any point in time

Ability to show which information got changed in the same transaction

Ability to show when it was changed

2

System Time Business Time

Captures the time when changes happened

to data inside DB2

Captures the time when changes

happen(ed) to business artifacts

DB2-generated history of updated or

deleted rows

Application-driven changes to the time

dimension of business artifacts

History based on DB2 system timestamps

Dates or timestamps provided by the

application

DB2's physical view of time Your application's logical view of time

Spans from the past to the present time Spans past, present, and future time

System validity ("transaction time") Business validity ("valid time")

Supports queries such as:

"Which policies were in DB on June 30?"

Supports queries such as:

"Which policies were active on June 30?"

3 System Time vs. Business Time

Illustration – Without Temporal Support

Time

Table

Illustration – Without Temporal Support

Time

t1: INSERT

row1

Table

Illustration – Without Temporal Support

Time

t2: UPDATE

row1

row1

Table

Illustration – Without Temporal Support

Time

t3: UPDATE

row1

row1

Table

Illustration – Without Temporal Support

Time

t4: DELETE

row1

DELETED

row1

Table

Illustration – Without Temporal Support

DELETED

row1

Table

“Current only”

Illustration – With Temporal Support

Time

Table

Table History

Illustration – With Temporal Support

Time

t1: INSERT

row1

Table

Table History

Illustration – With Temporal Support

Time

t2: UPDATE

row1

row1

Before t2

row1

Table

Table History

Illustration – With Temporal Support

Time

t3: UPDATE

row1

row1

Before t2

row1

Before t3

row2

Table

Table History

Illustration – With Temporal Support

Time

t4: DELETE

row1

DELETED

row1

Before t2

row1

Before t3

row2

Before t4

row3

Table

Table History

Illustration – With Temporal Support

DELETED

row1

Before t2

row1

Before t3

row2

Before t4

row3

Table

Table History

“Current only” “History only”

“Current + History”

IBM i 7.3 – DB2 for i Enhancements (Temporal)

New Catalogs

 QSYS2/SYSPERIODS

 QSYS2/SYSHISTORYTABLES

New Query period-specification

 FOR SYSTEM TIME AS OF <value>

 FOR SYSTEM TIME FROM <value> TO <value>

 FOR SYSTEM TIME BETWEEN <value> AND <value>

New Generated Columns

 ROW BEGIN (birth)

 ROW END (death)

 TRANSACTION START ID

 DATA CHANGE OPERATION

New Special Register

 CURRENT TEMPORAL SYSTEM_TIME

New SET OPTION

 SYSTIME (*YES | *NO)

17 Defining a System-period Temporal Table

 The row begin column represents the time when the row data became current

– This is an inclusive value for the system-time period

– TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN

 The row end column represents the time when the row data ceased to be current

– This is an exclusive value for the system-time period

– TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END

 The transaction start ID column contains the unique timestamp of the first data change in

the transaction that produced the row

– TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID

 The data change operation column contains a value to represent the operation

– I = row was inserted, U = row was updated, D = row was deleted (shown in history)

– CHAR (1) NOT NULL GENERATED ALWAYS AS (DATA CHANGE OPERATION)

 A system-period temporal table includes a system-time period definition with columns

that capture the row begin and row end times that indicate when the data in the row is

current

– This period is used to preserve historical versions of rows (in the history table)

whenever updates or deletes occur

 CREATE TABLE <history> LIKE is used to manifest the history table

 An SQL table becomes a system-period temporal table when ALTER TABLE ADD

VERSIONING statement is successfully executed

CREATE TABLE employees

(empID INTEGER NOT NULL PRIMARY KEY,

 dept VARCHAR(50),

 ...,

 system_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,

 system_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,

 trans_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID,

 op_id CHAR(1) NOT NULL GENERATED ALWAYS AS (DATA CHANGE OPERATION),

PERIOD SYSTEM_TIME (system_start, system_end));

CREATE TABLE employees_history

 LIKE employees;

ALTER TABLE employees ADD VERSIONING

 USE HISTORY TABLE employees_history;

18 Defining a New System-Period Temporal Table

CREATE TABLE employees

(empID INTEGER NOT NULL PRIMARY KEY,

 dept VARCHAR(50));

ALTER TABLE employees

 ADD COLUMN sys_begin TIMESTAMP(12) NOT NULL

 GENERATED AS ROW BEGIN IMPLICITLY HIDDEN

 ADD COLUMN sys_end TIMESTAMP(12) NOT NULL

 GENERATED AS ROW END IMPLICITLY HIDDEN

 ADD COLUMN trans_id TIMESTAMP(12) NOT NULL

 GENERATED AS TRANSACTION START ID IMPLICITLY HIDDEN

 ADD PERIOD SYSTEM_TIME (sys_begin, sys_end);

...

19 Altering an Existing Table to add System Time
Existing table has no timestamp columns

SELECT table_name,

 period_name,

 begin_column_name,

 end_column_name,

 history_table_name

FROM qsys2.sysperiods

WHERE table_name = EMPLOYEES';

QSYS2.SYSPERIODS

• All temporal tables and their period columns

• The names of the associated history tables

Temporal in the DB2 Catalogs

SELECT table_name,

 period_name,

 history_table_name

FROM qsys2.syshistorytables

WHERE table_name = 'EMPLOYEES';

QSYS2.SYSHISTORYTABLES

• The names of the associated history tables

New in the DB2 Catalogs

Schema Evolution

22

Schema changes that cannot cause loss of history are automatically propagated from the

base table to the history table:

 ALTER TABLE employees ADD COLUMN salary(INTEGER);

– New column automatically also added to history table!

 ALTER TABLE employees ALTER COLUMN dept SET DATA TYPE VARCHAR(90);

– No data loss!

– Column change applied base table and history table

 ALTER TABLE employees ALTER COLUMN dept SET DATA TYPE VARCHAR(2);

– Blocked due to potential data loss! (SQL0190)

– Must stop versioning before making this change

 ALTER TABLE employees DROP COLUMN dept;

– Blocked due to potential data loss! (SQL0196)

– Must stop versioning before making this change

 DROP TABLE employees;

– Both base table and history table are deleted!

 DROP TABLE employees_history;

– Blocked due to potential data loss! (SQL0156)

– Must stop versioning before making this change

system_time values are

always set by DB2!

EmpID Dept System_start System_end

12345 J13 11/15/2014 12/30/9999

67890 K25 11/15/2014 12/30/9999

On 11/15/2014, Employee 12345 and 67890 were hired into the department J13 & K25.

INSERT INTO employees (empID, dept) VALUES (12345,’J13’), (67890, ’K25’)

EmpID Dept System_start System_end

12345 J13 11/15/2014 01/31/2015

EmpID Dept System_start System_end

12345 M24 01/31/2015 12/30/9999

67890 K25 11/15/2014 12/30/9999

On 1/31/2015, Employee 12345 moved to department M24.

UPDATE employees SET dept = ‘M24’ WHERE empID = 12345

System validity period:

[inclusive, exclusive[

Note: only date portion of TIMESTAMP value shown in examples to simplify display

Table: employees

Table: employees_history Table: employees

23 Insert and Update

EmpID Dept System_start System_end

12345 J13 11/15/2014 01/31/2015

67890 K25 11/15/2014 03/31/2016

On 3/31/2016, Employee 67890 left the company.

DELETE FROM employees WHERE empID = 67890

67890 was in K25 from 11/15/2014 to 3/31/2016

EmpID Dept System_start System_end

12345 M24 01/31/2015 12/30/9999

EmpID Dept System_start System_end

12345 J13 11/15/2014 01/31/2015

12345 M24 01/31/2015 05/31/2016

67890 K25 11/15/2014 03/31/2016

On 5/31/2016, Employee 12345 joined the department M15.

UPDATE employees SET dept = ‘M15’ WHERE empID = 12345

12345 was in M24 from 1/31/2015 to 5/31/2016

EmpID Dept System_start System_end

12345 M15 05/31/2016 12/30/9999

Table: employees_history Table: employees

Table: employees_history Table: employees

M24 01/31/2015

24 Delete and Update

Specifying the Time Period for Queries

 A period is an interval of time that is defined by two date or timestamp

columns in a temporal table

 A period contains a begin column and an end column

 The begin column indicates the beginning of the period and the end column

indicates the end of the period

 DB2 manages all system time periods as inclusive-exclusive periods
– Using inclusive-exclusive periods makes it very easy to detect or avoid gaps

between time periods

 For querying, there is the notion of: explicit and implicit period specifications

 Explicitly including a system-time period-specification on a table reference for

a non-temporal table is an error

EMPID DEPT SALARY SYS_BEGIN SYS_END

67890 M15 7000 2016-01-01 2016-06-01

67890 M15 7500 2016-06-01 9999-12-30

valid up to and including 2016-05-31

Specifying the Time Period for Queries

Current History

No time period specification

Scope = current

Time period specification

Scope = current + history

= previous state

Specifying the Time Period for Queries

Current History

Time period specification

Scope = current + history

The “same” row can show up more than once in the set

select COLOR, count(*)

…

where COLOR in (‘RED’, ‘YELLOW’)

group by COLOR

= previous state

Specifying the Time Period

 Explicit Period Specification

– FOR SYSTEM_TIME
 AS OF value

 FROM value1 to value2

 BETWEEN value1 AND value2

 Implicit Period Specification
– An implicit period specification is affected by:

 CURRENT TEMPORAL SYSTEM_TIME special register

 SYSTIME bind option

– (AS OF CURRENT TEMPORAL SYSTEM_TIME) implicitly defined

– Note: for a native HLL open of a temporal table or view based on a temporal table

the CURRENT TEMPORAL SYSTEM_TIME special register does not apply and is

effectively ignored, thus historical rows are not accessed

1. Which department is employee 12345 in (right now)?

SELECT dept

FROM employees

WHERE empID=12345;

2. Which department was employee 12345 in on 12/01/2014?

SELECT dept

FROM employees FOR SYSTEM_TIME AS OF '12/01/2014'

WHERE empID=12345;

3. How many departments has employee 12345 worked in since 2014?

SELECT COUNT(DISTINCT dept)

FROM employees FOR SYSTEM_TIME FROM ‘2014-01-01’ TO CURRENT_TIMESTAMP

WHERE empID = 12345;

EmpID Dept System_start System_end

12345 M15 05/31/2016 12/30/9999

M15

J13

3

EmpID Dept System_start System_end

12345 J13 11/15/2014 01/31/2015

12345 M24 01/31/2015 05/31/2016

67890 K25 11/15/2014 03/31/2016

Without the FOR SYSTEM_TIME clause,

query reads the current data only

Table: employees_history Table: employees

29 Querying a System-period temporal table

Query Plan – The Union of Two Sets (Current and History)

System Time Special Register Considerations

When CURRENT TEMPORAL SYSTEM_TIME special register is set to

a non-null value:

 Insert, Update, Delete operations on system-period temporal tables

are blocked ! (SQ20535)

 Queries will implicitly invoke the time period

– FOR SYSTEM TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

 No "stacking" of system-time specification

– Set the desired system time either in the query or with the special

register, not both !

– The following will result in an error (SQ20524):

SET CURRENT TEMPORAL SYSTEM_TIME ‘12/01/2014’;

SELECT dept

FROM employees FOR SYSTEM_TIME AS OF '01/01/2015'

WHERE empID=12345;

31

32

CREATE VIEW v_salary_M15 AS

SELECT empID, salary,

FROM employees

WHERE dept = 'M15';

SET CURRENT TEMPORAL SYSTEM_TIME '2015-02-15';

SELECT * FROM v_salary_M15;

empID dept salary sys_end sys_end

12345 J13 5000 2015-01-01 2016-01-01

67890 M15 7000 2015-01-01 2015-06-01

67890 M15 7500 2015-06-01 9999-12-30

SET CURRENT TEMPORAL SYSTEM_TIME '2015-11-01';

SELECT * FROM v_salary_M15;

67890 7500 2015-06-01 9999-12-30

67890 7000 2011-01-01 2015-06-01

Queries against the view:

AS OF clause or special register

setting is applied to all temporal

tables in the view definition.

32 System Time Special Register Affects Views Too

Temporal Considerations

 Data modeling with temporal in mind – multiple instances of data

 Data integrity and transaction boundaries when base table and history table are in play

 Perspective of the data must always be clear and concise – “incorrect” output is possible

 Data life cycle must be well understood

 Increased probability of very large data sets

 Performance and scalability (UNION of 2 potentially large data sets)

 Only SQL query requests allow transparent inclusion and access of history

 Data governance and control – multiple instances of data must be secured

Summary

Current
State

Historical
State

Table

History Table

Time Travel

Any Questions?

